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Abstract

Background: Nanoparticle technology is a new drug delivery system with nano-scale-size.
The solid lipid nanoparticles are dynamic systems adopted for formulating water-soluble and
insoluble drugs in a colloidal carrier. Their matrix is solid lipids at room temperature and
their size ranges from 10 - 1000 nm. Solid lipid nanoparticles have many privileges including
protection of drugs from chemical, photochemical, and oxidative degradation. Also, they
could be modified to be formulated as sustained-release or controlled-release dosage forms.
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Keywords: Their limitations involve the low drug loading capacity with the possibility of leakage and
Solid lipid nanoparticles; Green damage during storage. The components of solid lipid nanoparticles are different but
strategies; generally regarded as safe. Their preparation methods are numerous, ranging from the usual
Cancer therapy; high-pressure homogenization to the green strategies. The most important applications of
Parasitic infection; solid lipid nanoparticles include parasitic infection, cancers and brain diseases. The

Brain delivery. bioavailability and efficacy of drugs like praziquantel, nitazoxanide, and amphotericin B were

greatly enhanced by solid lipid nanoparticles, improving treatment outcomes for conditions
such as Leishmaniasis, toxoplasmosis, and schistosomiasis. In cancer therapy, solid lipid

nanoparticles have been employed to target breast, lung, liver, and colon cancers, offering
improved cellular uptake, increased cytotoxicity, and reduced systemic toxicity through
surface decoration approaches. Furthermore, by overcoming the blood-brain barrier, solid

lipid nanoparticles have shown a trustworthy promise in facilitating effective brain delivery of
therapeutics for neurodegenerative disorders and brain tumors. Aim: This review highlights
the solid lipid nanoparticles' privileges, limitations, components, preparation techniques and
their important applications. Conclusion: solid lipid nanoparticles applications in
parasitic infection, cancers and brain disease could overcome the traditional drug delivery
challenges. By reducing systemic toxicity, enhancing bioavailability, improving targeting,
they pave the way for more effective therapies.
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1. Introduction

The diagnosis, treatment and prevention of different
diseases in general require the administration of active
pharmaceutical ingredients (APIs). These APIs are chemical
compounds synthesized artificially or obtained from
natural sources that are capable of producing direct effects
on living cells and organs (1). Their effects on non-diseased
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body parts might lead to therapeutic problems including
side effects, toxicity or therapeutic failure. This
necessitates the development of delivery systems that
target the API to the required site of action (2). Advanced
drug delivery systems are sophisticated technologies that
target the medication and depose it to the exact site of
action inside the body to provoke the maximum
therapeutic activity with the minimum undesirable effects
(3). These new drug delivery systems could overcome the
usual drawbacks encountered with the traditional drug
delivery systems such as first-pass metabolism low drug
stability, under optimum selectivity and decreased
bioavailability (4-6). A wide range of sophisticated
technologies could be adapted for the delivery of such
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systems such as those that depend on biomimetic
techniques, intelligent drug devices, micro-needles devices,
co-crystal systems, nanoparticles systems, nanoemulsions,
smart hydrogels and others (7-11).

Nanoparticles are predominately defined by their
surface- to- volume ratio which exceeds( 60 m?/ml) and are
typically <100 nm in at least one dimension. Nevertheless,
solid lipid nanoparticles (SLNs) up to 1000 nm have been
formulated depending on application requirements and
lipid composition (12,13). The classifications of
nanoparticles are wide and variant. Some depend on the
type of chemical components in the nano-metric scale that
classifies the nanoparticles into three categories: organic,
inorganic and carbon-based (14). Other classifications
depend on the type of materials used in their production by
which nanoparticles are classified into: polymer-based,
non-polymer-based, and lipid-based nanoparticles. Solid
lipid nanoparticles belong to the lipid-based category (15).
SLNs are dynamic systems adopted for formulating water-
soluble and insoluble APIs within a colloidal carrier. The
matrix of the SLNs are solid lipids at room temperature and
their sizes range from 10 up to 1000 nm depending on
production methods and/or types of used excipients
(15,16). The first SLN was produced by Miuller in 1991.
These first developed SLNs were prepared as tiny spherical
particles consisting of lipids (that were solid at room
temperature) which were able to form crystal lipid matrices
perfectly. Additionally, it was possible to incorporate one
drug or more between the fatty acid chains. These delivery
systems offered relatively excellent stability for drugs with
poor solubility and low bioavailability. Nowadays, SLNs are
represented in different shapes including flat ellipsoid and
disc-like geometry, as well as the traditional spherical
shape. In most cases, the loaded drug was attached to the
surface of the carrier matrix instead of the solid core that
could be employed for a wide range of applications (17).
This review covers recent advances in SLNs formulation
techniques and materials, and provides a comparative
analysis of conventional versus green preparation
strategies. Also, the applications of SLNs in specific
therapeutic areas are also explored to illustrate their broad
utility. Finally, current limitations and challenges of SLNs
systems are discussed as well. In this review, we conducted
a systematic literature search (January 2015-April 2025)
across PubMed, Scopus, and Web of Science, using
keywords ‘solid lipid nanoparticles’, ‘green synthesis’,
‘targeted delivery’, and disease- specific terms.

1.1. The privileges and limitations of SLNs

SLNs could be loaded by both hydrophilic and lipophilic
APIs (18). In contrast to liposomes, SLNs offer superior
protection for sensitive APIs from chemical, photochemical
and oxidative degradation which results from their ability
to immobilize the drug and reduce its out leakage (19).
Also, they protect the drug from degradable enzymes, first-
pass metabolism and chemical decomposition. Their nano-
sized diameter could shield them against the RES (Reticulo
Endothelial System) cells endocytosis that might occur in
the liver or the spleen (20). Other advantages of SLNs
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include their low toxicity as the excipients used in their
production are generally regarded as safe (abbreviated as
GRAS which is a term used to describe the excipients that
are safely used in foods and drugs industry) (21).
Compared to other polymeric nanoparticle systems, the
carrier lipids used in their formulations are usually
biocompatible and biodegradable (22). SLNs could be
modified to be sustained release or controlled release
dosage forms as they can control the release of the drug for
up to several weeks through the coating of the SLNs with
specific ligands (17,19,22). Also, they could be formulated
to be administered by various routes including oral, rectal,
pulmonary, nasal, ocular, dermal and injectable (23). In
addition, SLNs could be applied as targeting systems with a
relatively greater bioavailability at a specified site of action
(particularly the brain) (20). Finally, SLNs are stable over
one to three years which is a significant advantage
compared to other similar systems (24).

On the other hand, the most significant limitation of SLNs
involves their low drug loading capacity with the possibility
of drug leakage and damage that could happen during
storage. Another drawback is the limited number of
hydrophilic drugs that are suitable candidates to be
formulated as SLNs (25). Upon storage, lipid particles
polymorphism and microbial growth had been occurred in
some SLNs (26). At last, the coalescences and
agglomeration of the dispersed particles might lead to lipid
growth with unpredicted gelation and polymer transition
rate. Accordingly, further researches are required to
prevent and decrease these drawbacks and improve the
SLNs quality (27).

1.2. Categories of SLNs
According to the methods of the drugs incorporation within

the SLNs, they could be divided into three categories as
illustrated in Figure 1.

Drugs Lipid shells
Lipid core :

Shell

Core

Drug-matrix model Drug-enriched shellmodel Drug-enriched core model

Figure 1. Categories of SLNs according to the drug

incorporation methods*.
* (The figure was created using PowerPoint software and it was adopted from
reference number (28)).

e Drug-matrix model: The first category involves the homogenous
dispersion of the drug molecule within the lipid matrix of the
SLNs. Cold homogenization usually prepares these nanoparticles
without adding solubilizers (28).

e Drug-enriched shell model: This model depends on the thermal
homogenization of the lipid-drug mixture. The mixture heated
above the melting points of the lipid followed by rapid cooling of
the mixture to room temperature. These rapid thermal changes
would result in the formation of a shell around the drug particles
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in the outer part of the SLNs with the precipitation of the lipid
within their cores (16,28).

e Drug-enriched core model: The third model usually depends on
the hot homogenization technique. The lipid material should be
heated to the lipid melting point followed by the addition of drug
molecules at a concentration near or above their saturation.
Upon cooling of the mixture, the drug particles would precipitate
in the core. Further cooling would make these lipid particles to
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The SLNs typically consist of solid lipids phase and an

aqueous phase and this system stabilized into
nanoparticles by the addition of surfactants. Other
additional components, such as co-surfactants,

cryoprotectants, charge modifiers, and preservatives, may
be incorporated into SLNs depending on the drug targeting
strategy and the selected preparation technique.(29,30).

form a membrane-like shell around the precipitated drugs within A summary of all potential components for SLNs
the core of the SLNs (15,27). formulation is provided in Table 1. (29-32).
1.3. The SLNs components
Table 1: A summary of the most common components for SLNs formulation.
References
. Fatty acids like: Lauric acid, Dodecanoic acid, Palmitic (33,34)
acid, Oleic acid, Stearic acid, Behenic acid, Linoleic acid.
. Steroids like: Cholesterol, and triglycerides.
. Waxes like: Beeswax. (395)
Solid lipids . Glycerides: Mono and tri glyceryl stearate, Glycerol
phase monostearate, Glyceryl trilaurate, Glyceryl trimyristate, Glyceryl (36)
tripalmitate.
The typical . Hardened fat; Witepsol. (37)
components (38)
Aqueous phase Distilled water. (36)
Surfactants Phosphatidyl choline, Soy lecithin, Poloxamer, Polysorbate 80 (38-41)
(Tween 80).
Co-surfactants Sodium lauryl sulfate, Sodium taurocholate, Sodium oleate,
. (42-44)
Sodium glycocholate, Butanol.
The other Cryoprotectants GelaFm, Glucqse, Mannose, Ma}tose, Lact.ose, Sorbitol, Mannitol, (45,46)
o Glycine, Polyvinyl alcohol, Polyvinyl pyrrolidone
additional - p - : - -
components Charge Dipalmitoyl phosphatidylcholine, Stearylamine Dicetylphosphate, (47,48)
P modifiers Dimyristoyl phosphatidyl glycerol ’
Preservatives Antimicrobial like: Thiomersal, chitosan. (49-51)
Antioxidant like: vitamin E.

1.4. The preparation methods of SLNs

Different methods could be used in SLNs preparation.
These range from conventional to green preparations to
more complicated ones. The choice of the suitable
preparation method depends mainly on the physical and
chemical properties of the drug that is intended to be
formulated as SLNs. However, the cornerstone in SLNs
formulation is the synthesis of the microemulsion,
emulsion or micellar solution (30,31).

1.4.1 Homogenization under high-pressure techniques

This method depends on the vigorous movement of a
microemulsion under high pressure. This would produce
high shear stress that causes the microparticles to break
into nanoparticles. There are two general types of this
technique, hot homogenization and cold homogenization. In
the hot homogenization technique, the drug is incorporated
into a melted lipid. After that, the mixture was dispersed
using a high pressure homogenizer in a hot surfactant
solution. Upon cooling of the mixture to room temperature,
the lipid in the formed oil in water nanoemulsion would
solidify and with the generation of SLNs (52,53). In
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contrast, the cold homogenization involves the addition of
the drug in melted lipid which would be cooled rapidly by
dry ice. the resulting cold mixture would be milled into
micro sized particles and dispersed in a surfactant solution
at or below room temperature. The applied high pressure
homogenization would convert the formed nanoparticles
into SLNs (30). The limitations of these two approaches
include the high temperature in the first type which might
cause drug degradation or migration to the aqueous phase
during homogenization. The sudden cooling in the second
one might result in the coalescence of particles (54).

1.4.2 Solvent-involving techniques

These techniques include numerous approaches that rely
on the presence of organic solvent during SLNs
preparation. They could be divided into the following:

A- Solvent-evaporation method

This method is based on the incorporation of the drug and
the lipid phase in an organic solvent prior to the addition of
the aqueous phase. Then the two phases would mix
together while the solvent evaporates under low pressures
or through lyophilization to produce SLNs. The main
advantages of this method are its simplicity and its fast
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and cheap production steps. However, the most significant
limitation of this technique is its relatively poor efficiency
for the entrapment of extremely hydrophilic medications.
This problem could be solved by the encapsulation of the
hydrophilic drug through a solvent emulsification
technique (which is called the double emulsion technique).
The hydrophilic drug dissolved in aqueous media
containing an emulsifying agent to produce water in oil
emulsion within the organic solvent. Upon the addition of
this phase to the aqueous phase, the doubled emulsion
phase would form with continuous mixing (as water in oil
in water emulsion). The formation of SLNs was brought
about by the evaporation of the solvent under high
shearing stress. The SLNs that are produced by this
technique are usually too large which could be considered
disadvantageous (55,56).

B- Solvent-emulsification diffusion method

In this method, a water-miscible solvent is used to dissolve
the drug-loaded lipid with sufficient stirring. This will
represent the oil-organic solvent phase and be added to an
aqueous phase containing surfactants under continuous
mixing to form oil in water emulsion. The SLN s formation
will occur upon the dilution of the formed emulsion with
water in a ration of up to 10 times with the resultant
diffusion of the organic phase through the continuous
aqueous phase. SLNs will then be purified by passing
through a dialysis membrane while the organic solvent will
be removed by lyophilization (57-59).

C- Solvent-injection method

In general, this method is similar to the solvent-
emulsification diffusion technique as the organic phase
contains the drug-loaded lipid and the aqueous phase
contains the emulsifiers or the surfactants. However, in
this technique the organic phase will quickly injected by a
needle into the aqueous phase with continuous stirring
and under pressure (37). After the injection, two steps will
lead to SLNs formation. The first one involves the reduction
in the particle size by solvent diffusion into the aqueous
phase with an increase in lipid concentration within the
droplets. While the second step involves the impact of the
emulsifiers in reducing the interfacial tension between the
aqueous and the organic-solvent phase resulting in SLNs
formation. The lipid particles produced by this technique
are much smaller and more stable than the ones that are
produced by the solvent involving techniques. In addition,
this method is cost-effective process but the cornerstone is
the solvent diffusion rate at the injection site that will
control the reduction in the lipid particle size (60).

1.4.3 Microemulsion technique

This method depends on the heating of the solid lipid-drug
phase above the lipid melting point. This mixture will be
added to a previously heated aqueous-surfactant phase
with gentle stirring to produce micro-emulsion. The hot
micro-emulsion will be dispersed in an icy water with
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continuous stirring to produce SLNs. After that, the
mixture will be filtered and the remaining water will be
removed by lyophilization. The cornerstone in this
technique is the type and amount of surfactants used and
the ratio of hot micro-emulsion to water that should not
exceed 1 to 50 (54,61,62).

1.4.4 Membrane contactor technique

This method is more complicated as it requires the use of a
special membrane contractor module. The surfactant-
containing aqueous phase should pass through the interior
side of the membrane, while the hot lipid phase will be
enforced by pressured vessels through the membrane pores
from the outer side to the inner side. The resulting hot
emulsion will be transformed into SLNs when the mixture
is allowed to cool at room temperature. This method offers
a controllable SLNs production with uniform particle size.
However, their main drawback is that the difference in
temperature between the aqueous and the lipid phases
should maintained as comparable as possible to prevent
premature lipid solidification (63).

1.4.5 The Green Strategies in SLNs preparation

The green strategies have been developed to decrease the
environmental influences of the pharmaceutical industry
(27). They afford more efficient and faster reaction with a
better safety profile by excluding the need to use toxic
organic solvents. Additionally, they produce a formula with
higher solubility due to the lower polydispersity index and
better particle size distribution. The green strategies could
be used in SLNs preparation. For instance, ultrasound
assisted methods use acoustic cavitation to form
nanoemulsions at temperatures not exceeding 60 °C which
ultimately reduce energy consumption and allow solvent
free  production. @Whereas Microwave instruments
accelerates lipid melting by uniform volumetric heating,
while avoiding hot spots and solvent residues (54).
Furthermore, supercritical fluid techniques are also used
for the same purpose, it forms SLNs in one step, making
use of tunable solvent power of supercritical fluids,
eliminates the need to use toxic solvents and high shear
processes (64). Producing SLNs using green strategies
includes all following techniques:

A- Ultrasound-producing techniques

SLNs preparation by these methods involves the
application of an ultrasound-producing apparatus like an
ultrasonic bath, ultrasonic probe or ultrasonic high-speed
homogenizer to produce an efficient mixing with particle
size reduction to nanoemulsion size range with ultimate
production of SLNs. The heated aqueous surfactant-
containing phase will be added to the lipid drug-containing
phase that was previously heated above the lipid melting
point. After mixing, a coarse emulsion will be formed which
will convert to a nano-size emulsion by the power of
ultrasound-producing apparatus. The SLNs will produced
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upon the dilution of the formed nanoemulsion with an ice-
water bath (56,65). The produced emulsion may contain a
wide range of particles sizes which is the main drawback of
this technique. Filtration and lyophilization of the formed
emulsion will increase particle size stability and decrease
poly size distribution. The ultrasonic probe may cause
metal contamination of the produced formula (66,67).

B- Microwave-producing technique

In this technique, a microwave-producing apparatus like a
microwave tube is used to agitate and heat the micro-
emulsion mixture by microwave energy which would
increase mixing efficiency and decrease particle size and
polydispersity (68). The oil drug-containing phase will be
mixed with surfactant-containing aqueous phase to
produce a micro-emulsion. The combined effects of the
uniform mixing and heating obtained from the microwave
rays would cause the micro-emulsion to be transformed
into a nano-sized one. The heat will distribute equally in all
directions producing more uniform size reduction and
lower the polydispersity index. The SLNs will be formed by
the cooling of the nanoemulsion in an ice-water bath
(69,70).
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C- Supercritical fluid technique

This is a novol environmental-friendly method for SLNs
production. The most common type of this technique that
is useful in pharmaceutical preparation is carbon dioxide
approach. The types of particles produced by this method
are smooth with small uniformly distributed particle sizes.
Beside that, this method excludes the need to use toxic
solvent as well as the application of high temperature
and/ or high sheer stress in nanoemulsion formation.
Therefore, this technique is more favorable for heat liable
drug-loaded SLNs production (64,71). The main principle of
the COaz-supercritical fluid technique depends on the
temperature-pressure phase diagram and the use of
solvent and anti-solvent technique where the drug is
soluble in the CO2z solvent and both solvent and anti-
solvent are miscible. An expansion will occur in the
solution leading to the precipitation of particles with very
low particle size (72).

A summary of the advantages and disadvantages of the
SLNs different preparation techniques have been included
in Table 2.

Table 2: A summary of the advantages and disadvantages of the SLNs preparation techniques.

Preparation technique Advantages Disadvantages References
Homogenization under high-pressure
technique
e Hot homogenization Low cost of production. and avoid the Thermal damage. (32,73)
use of organic solvent. [
e Cold homogenization Used for thermally liable compounds. High polydispersity index.
Solvent- involving techniques .
Low cost of production. and the ’é‘i};:rmal damage and large particle (72).
e  Solvent- evaporation method availability for single and double :
emulsions.
Could be used to incorporate Particle coalescences. (74).
e  Solvent-emulsification diffusion method | hydrophilic drugs.
e Solvent- injection method Production of stable small-size Require additional solvent
particles. (60).
removal.
. . High amount of surfactant is
. . . Avoid organic solvents and produce .
Micro-emulsion technique . . required. (62,75,76).
small-size particles. o
Stability problem upon storage.
Control over the size of the produced Not reproducible for large-scale
Membrane contactor technique particles through the selection of the pr g (32).
. production.
membrane size.
The Green Strategies techniques . . . (77).
e  Ultrasound-producing techniques Avoid toxic organic solvents. . o
Reduce shearing stress. Possible metal contamination.
. Mi ducine techni Avoid toxic organic solvents. (69,70).
lcrowave-producing technique Uniform and controlled heat Cost process.
distribution. High amount of aqueous phase.
Produce purified SLNs with small
particle sizes.
. . . (71).
s itical fluid techni Avoid toxic organic solvents.
° upercritical fluid technique Reduce shearing stress. Cost process.
Used for thermally liable compounds. Multistep process.
low polydispersity index.
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1.5.Impact of particle characteristics on drug
release

It has been shown that particle characteristics such as the
crystallinity of the lipid matrix, particle size, and the
surfactant's or ligand shell's thickness directly influence
the release kinetics from SLNs. Pandey et al. noticed that
SLNs smaller than 100nm exhibited burst release,
releasing up to 30% of the drug load within the first hour,
whereas larger particles > 500nm sustain drug release over
several days (31). On the other hand, Duan et al. reported
that a-to-f polymorphic transitions in the lipid matrix
during storage can lead to drug expulsion and modify
release profiles, highlighting the important influence of
matrix crystallinity in the kinetics of diffusion (19).
Moreover, Aldayel et al. reported that SLNs coated with
chitosan form an additional diffusion layer which
ultimately minimizes the initial burst release effect and
reaches almost zero order release kinetic over two days
(78).

1.6. Applications of SLNs

A summary of the different applications of SLNs is
expressed in Figure 2.

& 1 =53 o 2 @

Figure 2. A summary of the SLNs applications*.

* (The figure was created using PowerPoint software).

1.6.1 SLNs in parasitic infections

Causes of liver damage can vary, and one common cause is
parasitic infections. Their occurrence might be unexpected,
which adds a burden in both diagnosis and treatment
(especially in HIV and AIDS patients as well as travelers)
(79).

Studies have been focused to deliver antiparasitic drugs as
SLNs, such as Praziquantel (80-82), Nitazoxanide (NTZ)
(83), and amphotericin B (AmB) (84,85), for improved
therapeutic outcomes.

Treatment strategies for Leishmaniasis (both visceral and
cutaneous leishmaniasis), a protozoal infection, involve the
multiple administrations of toxic agents, which encounter
side effects. To improve the absorption, stability, and
bioavailability of the administered drugs, nanotechnology
in general and SLNs particularly seem promising
alternatives (80).

Parvez et al. (81) developed a novel carrier system to deliver
AmB and paromomycin as oral therapy against visceral
leishmaniasis (VL). The modified dual-drug SLNs (m-
DDSLNs) were produced wusing 2-hydroxypropyl-B-
cyclodextrin (HPCD) to incorporate both AmB and
paromomycin. The in vitro tests (cytotoxicity assay and
antileshmanial activity) were performed using mouse
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macrophage cell line J774A.1, whereas the in-vivo study
utilized L.donovani-infected BALB/c mice. The results
revealed that m-DDSLNs were less toxic, more
biocompatible than conventional liposomal forms, and
better uptaken by the infected macrophage. Unlike free
AmB and paromomycin, m-DDSLNs significantly reduced
the intracellular amastigotes (81).

It was shown that Artemisinin has antileishmanial activity
against certain species, but a problem encountered during
its administration which is the low bioavailability and the
requirement for multiple-frequency administration (82). A
study by Akbari et al (83) included the delivery of
artemisinin as SLNs to treat VL. In comparison to the free
artemisinin, artemisinin-loaded SLNs showed superior
antileishmanial activity in L.infantum infected BALB/c mice
with a significant reduction in parasite burden in the
spleen (85 + 3.1 %), liver (84.7 +* 4.9 %) and
hepatosplenomegaly (83).

Globally, it is estimated that 30- 50% of the population
worldwide show positive serology for toxoplasmosis (84).
Paromomycin (PM) is an aminoglycoside antibiotic with
broad activity against bacteria and certain parasite species
(85). Challenges such as short half-life encountered during
its administration (86).

Khosravi et al. (87) prepared mannosylated SLNs and
loaded them with PM (PM-SLN-M) to treat acute
toxoplasmosis. To evaluate cytotoxicity, and the effect
produced by paromomycin and the mannosylated PM-
loaded SLNs on intracellular toxoplasma, an MTT assay
was performed. It has been proven that the mannosylated
PM-loaded SLNs have the lowest cytotoxicity than PM-SLNs
and PM. Furthermore, toxoplasma gondii tachyzoites were
significantly killed by PM-SLN-M. Accordingly, such
findings proved that the PM-SLN-M has superior anti-
toxoplasma efficacy and the lowest host cytotoxicity, even
at high concentrations (87).

The same story applies to anthelmintic drugs, which is the
need for targeted drug delivery to avoid side effects and
excess administration of therapeutics. In 2024, a unique
study by Sharma et al. (88) used Beeswax ethanolic extract
to fabricate Albendazole SLNs (SLN-A) against the intestinal
worm Haemonchus contortus. The extract is considered a
lipid-based source used by the worm as food.

Although mortality rates are not so high with intestinal
worm infections, they can cause various health drawbacks
such as diarrhea and growth rate retardation. With its
limited water solubility, Albendazole shows activity against
these intestinal worms. Haemonchus contortus uses lipids
as energy source and synthesizes parasite-specific lipids
which are wused in host invasion. Enhancement of
albendazole entrapment efficiency along with an increment
in its potency to about 50 folds (due to sustained release
property) could be achieved by the formulated particles.
Such outcomes would create a revolutionary change in
anthelmintic therapy which besides the ability to reduce
the dose of the drug, will reduce the side effects as well
(88).

Schistosomiasis is a
specifically caused by
Schistosoma spp. (89).

helminthic
infection

parasitic disease
with  trematodes,
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Challenges occurred during schistosomiasis or bilharzia
treatment. For instance, thelow bioavailability of the drugs
of choice. Nanotechnology has emerged as a solution in
general and SLNs in particular for such challenges (90).
Adekiya et al(91) conducted a study to develop and
evaluate the stability of Praziquantel-loaded SLNs. Results
revealed an elevation in entrapment efficiency and drug
loading capacity and an increment in the stability of SLNs
when Pluronic F127 is used as a stabilizer. Besides, in
Schistosoma mansoni-infected mice, a single dose of the
drug-loaded SLNs enhanced its antischistosomal post-
infection efficacy dramatically.

1.6.2 SLNs in Cancer therapy

Cancer is still the most life-threatening disease that any
person could face. The ability of any treatment to reach
specific target sites either intracellular or intercellular and
reduce their precipitation in other tissues is a key point in
treating cancer. Traditional administration of medications
is the most common way of drug treatment. However, it has
many challenges, such as low drug solubility, specificity,
and increased toxicity. Moreover, an increment in drug
resistance to therapy, particularly multidrug resistance
(MDR) is another obstacle facing cancer treatment (92).
While liposomes, polymeric nanoparticles, and
nanoemulsions remain important carriers, SLNs have
emerged as a complementary platform offering distinct
advantages in stability, biocompatibility, and scalable
manufacturing since their development in the early 1990s
(93).

A- Breast cancer

In recent years, nanotechnology has offered a better way
for anticancer therapy. Breast cancer is the most common
type of cancer that causes women's deaths annually.
Different forms of treatment exist such as surgery,
chemotherapy, hormonal, and radiotherapy being chosen
according to many factors, for instance, the patient’s tumor
subtype (94).

The radiolabeled (TRZ),
monoclonal antibody was loaded into SLNs. TRZ targets
HER2, which upon binding to HER2 protein, will inhibit
the epidermal growth factor reaching the cancerous breast
cells, hence the immune cells can easily destroy them due
to the inhibition of cell division. In this study, SLNs were
formulated by high-shear homogenization and sonication.
Dynamic light scattering measurements showed that the
prepared formulations were around 100 nm in size with a
negative charge. High radiolabeling efficiency along with
stability results were obtained from radiolabeling studies.
Apoptotic activity study results revealed that all SLNs
formulations induced apoptosis effectively with higher
activity contributed by those that contain TRZ (TRZ SLN-1
and TRZ SLN-2), compared to control groups. In vivo,
pharmacokinetic study results showed that the treated
TRZ-loaded SLNs exhibited a sustained release profile

trastuzumab a humanized
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compared to free drug solution following parenteral
administration in a rat model. Significant increments in
pharmacokinetic parameters (Co and AUCo-24) were
observed with TRZ SLN-1 which could be attributed to the
smaller particle size and the negatively charged nature of
the particles compared to TRZ solution (95).

In 2022, Darabi et al.(96) succeeded in formulating dual-
targeting SLNs containing doxorubicin against a triple-
negative breast cancer cell (TNBC) line. Among all cases of
breast cancer, it occurs in 15-20% of patients and is
characterized by being an aggressive subtype with no
curable treatment available. Anti-EGFR and anti-CD44
aptamers were attached to the prepared particles to target
the latter two, which are highly expressed in this tumor
subtype. Additionally, dexamethasone was decorated into
the particle surface by chemical reaction to achieve better
nucleus targeting by doxorubicin. Doxorubicin was almost
completely released after 48 hours of incubation and the
decorated SLNs with either EGFR or CD44 aptamers
exhibited better cell proliferation inhibition.

A combination of Etoposide and quercetin as SLNs (QC-
ETO SLNs) was conducted by Afarin et al. (97). Findings
revealed inhibition of cell division and suppression of
tumor activity following the exposure to either QC-SLNs
alone or combined with ETO. An enhancement of apoptosis
was observed with the QC-ETO SLNs. Furthermore, an
increment in both bioavailability and controlling QC release
was observed with these SLNs, making them a suitable
choice for breast cancer therapy.

B- lung cancer

The most common type of cancer following breast cancer is
lung cancer. It occurs in both men and women, causing a
considerable percentage of mortality in both sexes,
particularly men all over the world. Although the standard
way of treatment is chemotherapy, the prognosis is still
poor, with a 15% survival rate in five years (98,99).
Curcumin (Cur), popularly called turmeric, is well known
for its various pharmacological actions, including
anticancer effects. Its anticarcinogenic actions are owed to
the ability of Cur to target multiple aspects, including
growth and angiogenesis regulators and apoptotic genes
(100). Rahman et al.(101).

formulated curcumin SLNs (Cur-SLNs) as a potential
treatment for lung cancer. Cytotoxicity of the prepared
particles was assessed against the A549 cell line. Results
showed that curcumin SLNs exhibited more cytotoxic
effects than plain curcumin suspension. Besides, an
increment in cell uptake was achieved by the prepared
Cur-SLNs adding to that their stability for up to 90 days
following their storage.

Another study investigated the co-loading of paclitaxel and
curcumin as SLNs to treat lung cancer. Both in-vitro and
in-vivo studies were conducted using A549 cell lines and
BALB/c mice, respectively. The in-vivo study results
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reported a twelve-fold reduction in tumor volume with no
alteration in the body weight of the investigated mice.
Moreover, this co-delivery achieved synergy and higher
cytotoxicity (indicating its potential in lung cancer therapy),
enhancement of the anticancer effect and improved
targeting by these SLNs (102).

C- liver cancer

Hepatocellular carcinoma (HCC) is the most commonly
occurring form of liver cancer. Liver cancer is considered
the fifth leading cause of death by cancers (103).
Traditional forms of treatment include surgery and
chemotherapy. Chemotherapy is still facing the problem of
resistance caused by MDR, providing only symptomatic
relief with no eradication cure. On the other hand, surgery
is not successful in patients in the advanced stages.
Ultimately, targeting such types of tumors becomes
necessary, either passively or by active targeting (104).
6-Mercptupurine (6-MCP) was successfully formulated as
SLNs with improved solubility and bioavailability. A
cytotoxicity study against HCC was performed on the
(HEP3B) cell line. Results showed that the optimized
formulation had a significant cytotoxic effect compared to
the pure 6-MCP (105).

Surface decorations of SLNs could enhance specific
receptor targeting. Polyethylene glycol (PEG) modification of
SLNs co-loaded with organic capped superparamagnetic
iron oxide NPs (SPIONs) and sorafenib to examine their
efficiency in drug delivery and specific liver accumulation
driven by magnetic implants. Extensive characterization of
the prepared particles was made as entrapment efficiency,
imaging properties, and drug loading. Results showed that
the generated magnetic field had led the PEG-modified
(sorafenib/ SPIONs) SLNs to exhibit better organ
accumulation (106). On the other hand, SLNs surface
modification by glycyrrhetinic acid (GA) and/or folate (FA)
has been conducted by Xu et al. (107) to encapsulate the
anticancer agent Cantharidin (CTD).

Best tumor targeting was achieved by the decorated SLNs,
using the HepG2 hepatocellular carcinoma cell line with
less cytotoxic effect on the hepatocyte cell (L-02) line.
Additionally, better tumor inhibition was exhibited by the
modified SLNs as shown by in-vivo study results. Overall,
both GA and FA ligands targeted the HepG2 cells
effectively.

D- Colon cancer

High incidence rates of morbidity and mortality have been
reported to be caused by colon cancer which represents a
major health concern around the globe (108). It is
characterized by the occurrence of uncontrolled growth of
neoplasm cells both in the rectum and colon. Although
surgical removal is still the mainstay of tumor therapy,
other modalities including chemotherapy, immunotherapy,
and radiation are of value in ceasing tumor growth and
removing circulating neoplasms (109).
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To achieve a targeted effect on the recepters present in the
epithelium of the colon surface, Ahmed et al(110)
conducted a study to prepare SLNs loaded with irinotecan
(IRN) and daidzein (DZN) and the surface modified with
hyaluronic acid (HA) and bovine serum albumin (BSA). In-
vitro cell line studies on HT-29 demonstrated that the
prepared SLNs exhibited a more cytotoxic effect (only at 75
ug/ml), indicating that SLNs uptake was by endocytosis
(receptor-mediated) process.

Furthermore, apoptosis was inhibited by 56% and a
histopathological study confirmed that the decorated SLNs
(HA-BSA) restored the normal colon architecture and
mucosa. Due to low stability, water solubility, and high
volatilization, Moghimipour et al(111) formulated thymol
as SLNs (Th-SLNs) using the microemulsion method. They
were characterized by atomic force microscope (AFM),
Fourier-transformed infrared spectroscopy (FTIR), and
differential scanning calorimetry (DSC).

Additionally, cytotoxicity and hemolysis studies were also
conducted. AFM images showed that the prepared particles
were spherical. Both DSC and FTIR graphs illustrated the
loading of thymol into SLNs. Moreover, Th-SLNs had a
significantly higher cytotoxic effect on the HT-29 cell line
when compared to the free thymol and blank-SLNs, which
in turn confirmed that the prepared SLNs undergo
successful endocytosis by the cancerous cells and also
higher stimulation of apoptosis as well. Hemolytic analysis
confirmed the hemocompatibility of the prepared SLNs.
1.6.3 Brain delivery of drugs

Disorders in the such as brain
neuroinflammation, neurodegenerative
(NDDs) are abundant worldwide causing a considerable
percentage of morbidity and mortality.

Neurodegenerative disease examples include Parkinson's
disease (PD), Alzheimer's disease (AD), Huntington’s
disease (HD), epilepsy, dementia, Multiple Sclerosis (MS),
brain stroke, and headache. Medical therapy for these
neurological disorders is complicated due to the presence
of the blood-brain barrier (BBB), which creates vital
boundaries between blood in the circulation and neuronal
environment that avoid or even inhibit the passage of
foreign materials, immune cells, and toxic metabolites to
the CNS (112,113).

brain,
and

tumors,
diseases

The BBB maintains normal homeostasis and ion movement
in the brain. Although BBB possesses all these advantages,
it still represents an obstacle to drug entry into the CNS
even if it became penetrable during many neurological
disorders such as (PD, AD, and MS) (114). Nanotechnology
paved the way to deliver drugs to the brain, overcoming the
BBB and chemotherapy is faster growing to find solutions
that alleviate the neurodegeneration process in NDDs.

Various treatment options are available for Alzheimer's
disease, a massive NDD characterized by the accumulation
of the intercellular protein segment amyloid-beta (AP) and
intracellular condensation of tau proteins twisted fibers.
Although neurotransmitter regulation of acetylcholine and
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glutamate remains the mainstay of therapy, other
researchers studied the reduction of oxidative stress in
animal models with AD as a form of treatment to reduce
the cognitive and memory impairment associated with the

disease.

Resveratrol (RSV), a natural polyphenol stilbene
compound, has an antioxidant character and has been
formulated as SLNs to attenuate neurodegenerative
symptoms by Khishvand et al Morphologically, the
particles were spherical and not aggregated. In-vivo study
results showed that RSV-SLNs were more efficient in
reducing lipid peroxidase and elevating glutathione levels
in brain samples. Histopathologically, it has been
demonstrated that RSV-SLNs cause a reduction in neural
deficits and improved AD- symptoms when compared to
free RSV (115).

Dimethyl Fumarate (DMF) is encapsulated in SLNs in
inhalational therapy. It explored the potential to alleviate
central nervous system (CNS) and lung inflammatory
response in MS wusing animal models induced with
autoimmune encephalomyelitis (EAE). Being an immune
disease, MS is characterized by chronic inflammation in
the CNS with demyelination.

DMF is approved as an effective oral therapy with
neuroprotection and anti-inflammation. However, severe
gastrointestinal side effects result from oral administration
causing less therapy adherence by patients. In this work
done by Pinto et al. EAE mice treated with DMF-loaded
SLNs by inhalation demonstrated a reduction in weight
loss, clinical scores, and CNS vascular permeability. Levels
of pro-inflammatory cytokines TNF-a and IL-17 were
reduced while an increment in FOXp3 levels in the spinal
cord occurred. These results suggested that inhalation
therapy with DMF-SLNs could be a promising approach in
treating MS, reducing CNS inflammation and progression
of the disease (116).

The nose-to-brain approach is also used as cargo to cross
the BBB and a shortcut to deliver medications to the brain
by an olfactory pathway which serves as a gateway for
drugs to enter the CNS. Haloperidol (HPL), is an
antipsychotic drug used to treat multiple psychiatric
disorders such as mania, schizophrenia, and hyperkinesia.
It was formulated as SLNs that target the brain by Yasir et
al. through the intranasal route. SLNs were prepared using
the emulsification diffusion technique with glyceryl
behenate as the lipid and tween 80 as the surfactant.
Extensive characterization was performed and results
showed that the optimized formula (HPL-SLNs 6) achieved
significant brain targeting, with the brain AUC, -« higher
(2.7 times) than HPL- solution (HPL-sol) when administered
intravenously, and 3.66 times higher when HPL-sol was
given intranasally (117).
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Friedreich ataxia (FRDA), is an autosomal recessive
hereditary disorder caused by frataxin deficiency and
characterized by mitochondrial dysfunction and oxidative
stress; Diazoxide (DZX), a vasodilating agent used in the
treatment of hypertension, showed promise in the
treatment of preclinical-models, however, its efficacy is
limited due to its poor penetration to the brain implicated
by the BBB and toxicity caused by the required high dose.
Arduino et al.(118) conducted a study to formulate DZX as
SLNs to enhance BBB penetration and reduce toxicity. The
prepared particles were characterized, and the in-vitro BBB
model demonstrated an improved permeability compared to
free DZX. Furthermore, at only 1 pM concentration, an
enhancement of cell viability was demonstrated by FRDA
fibroblast cells. Moreover, SLNs-DZX treatment
significantly reduced total and mitochondrial reactive
oxygen species (ROS) levels compared to controls and
empty SLN-treated cells. Such findings highlight the
importance of the SLNs approach in treating FRDA,
providing an improved BBB penetration, reduced toxicity,
and effective reduction of oxidative stress.

The significance of SLNs in brain tumor therapy cannot be
overlooked. In adults, Glioblastoma multiforme (GBM)
represents the most aggressive and predominant tumor of
the CNS characterized by poor prognosis and invasive
nature. Multiple modes of therapy exist, with no definitive
cure. This clarifies the urgent need for innovative
therapeutic strategies (119). To be effective in GBM
treatment, anticancer should penetrate the BBB effectively.
So nanotechnology generally and SLNs in particular offer a
possible solution.

These nanoparticles showed biocompatibility enhancement,
and less systemic toxicity when compared to conventional
delivery approaches and other anticancers used to treat
GBM. A study conducted by Kadari et al.(120) to formulate
SLNs decorated with angiopep-2 (A-SLNs) which is a ligand
that targets the lipoprotein receptor-related protein 1
(LRP1), which is overexpressed in both brain endothelial
and glioma cells, to enhance the delivery of docetaxel. This
modification resulted in the enhancement of cytotoxicity
and cellular uptake and an increment in apoptosis in
U87MG human glioblastoma and GL261 mouse glioma
cells compared to non-modified SLNs.

Furthermore, in-vivo pharmacokinetic and biodistribution
studies confirmed superior brain accumulation and
targeting of (A-SLNs) when compared to Taxotere, a
commercially available docetaxel formulation. These
findings highlight the potential of angiopep-2-decorated
SLNs as a targeted drug delivery platform for GBM therapy.
A summary of all the above mentioned SLNs formulations
with their drug-loaded, main components and method of
production are arranged in Table 3.
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Table 3: A summary of the most common SLNs formulations with their drug-loaded, main components and method of

production.
Type ot Drug-loaded The main components of SLNs. The method of Production References
disease g P
Lipid Phase: glyceryl monostearate
and soya lecithin.
Amphotericin B Surfactants: PEG 400 and Tween 80. | Emulsion formation and solvent (81)
Paromomycin evaporation method.
Stabilizer: polyvinyl alcohol and
PEG 400.
. Llplq Phase: stearic acid or cetyl 1. Microemulsion technique.
Paromomycin sulfate palmitate. 2. Solvent diffusion technique (86)
SLNs in Surfactants: Tween 80 and Span 85. ) que.
Paras1't 1e Lipid Phase: tristearin (1% w/v) and
infections s S
Paromomycin sodium soya lecithin. Solvent injection method. (87)
Surfactants: Tween 80.
Charge modifier: stearyl amine.
Albendazole Lipid Phase: beeswax. . .
Rhodamine B Surfactants: Poloxamer 407. Double emulsion technique (88)
broi Llpld'Phase: Compritol and Solvent injection co-
raziquantel lecithin. homogenization techniques (1)
Stabilizer: Pluronic F127. g q
(Lipid Phase Glyceryl
Tamoxifen citrate Palmitostearate. Hot emulsification method. (94)
Surfactants: Cremophor.
Radiolabeled Lipid Phase: stearic acid and High shear homogenization and (95)
trastuzumab lecithin. sonication techniques.
Lipid Phase: glycerol monostearate
Doxorubicin and soy lecithin. Double emulsification and the (96)
hydrochloride Surfactants: Tween 80. solvent evaporation technique.
Cryoprotectants: manitol.
Etoposide and Lipid P.h ase: Compritol, oleic acid Ultrasonic producing techniques
Quercetin and lecithin. and homogenization method (97)
' Stabilizer: polyvinyl alcohol . g )
Lipid Phase: glyceryl monostearate. . L L
Curcumin Surfactants: Tween 80. Emulsification-ultrasonication (101)
method.
Paclitaxel and Llpld Phase: Compritol or Stearic . o
Curcumin acid. High pressure homogenization. (102)
) Surfactants: Tween 80.
. Lipid Phase: Precirol ATOS. .
6-Mercaptopurine. Surfactants: Tween 80. Stabilizer: Double em ulsion-solvent (105)
. evaporation method.
polyvinyl alcohol .
Superparamagnetic iron s . .
SLNs in oxide nanoparticles and Lipid Phase: Cetyl palmitate. Hot homogenization method. (106)
- Surfactants: Tween 80.
cancer Sorafenib.
therapy Lipid phase: glycerol monostearate . o )
Cantharidin. and egg yolk lecithin. EmL}lllswn ultrasonic dispersion (107)
Stabilizer: Pluronic F68. method.
Irinotecan and Daidzein
1soﬂavon(?1d d.ru gs with Lipid Phase: stearic acid. . S
hyaluronic acid and . high-shear homogenization. (110)
. . Surfactants: Tween 80.
bovine serum albumin
surface coated.
Lipid Phase: glycerol monostearate
Thymol. and stearic acid. Microemulsion method. (111)
Surfactants: Tween 80.
Lipid Phase: glycerol monostearate. Solvent emulsification-
Resveratrol. Surfactants: Tween 80. evaporation technique. (115)
SLNs in Haloperidol. Lipid Phase: glyceryl behenate. Emul;lﬁcatmn diffusion (117)
A Surfactants: Tween 80. technique.
Brain o p
delivery of Diazoxid Lipid phase: cetyl palmitate. Nanoprecipitation techni (118)
drugs azoxide. Stabilizer: Pluronic F68. anoprecipitation technique
Lipid phase: glycerol monostearate .
Docetaxel. and Stearic acid. Not mentioned. (120)

142




Amal Fakhrulddin Al-Dulaimi & et al.

2. Conclusions
In conclusion, solid lipid nanoparticles (SLNs) offer
significant advantages over traditional drug delivery
systems, including improved bioavailability, reduced
systemic toxicity, and the unique ability to cross biological
barriers such as the blood-brain barrier. They can be
formulated in various forms using key components such as
solid lipids, surfactants, and an aqueous phase, and can
be produced through a range of versatile techniques. The
findings of this review highlight the transformative
potential of SLNs in addressing diverse clinical challenges.
Notably, their applications in parasitic infections, cancer,
and brain diseases demonstrate the ability to overcome
many limitations of conventional drug delivery methods.
However, challenges such as low drug loading capacity,
instability during storage, and difficulties in large-scale
production require further investigation. Future research
should focus on developing optimized SLN formulations for
hydrophilic drugs and adopting environmentally friendly
manufacturing techniques. By addressing these challenges,
SLNs have the potential to emerge as next-generation drug
delivery systems, offering improved patient compliance and
therapeutic outcomes across a wide range of diseases.
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