Siamese Neural Networks and Transfer Learning for Kinship Verification from Dermal Palm Images

Section: Research Paper
Published
Sep 1, 2025
Pages
90-103

Abstract

Kinship verification is a crucial research area due to its diverse applications, including paternity tests, family reunions, and criminal investigations. While DNA analysis has been the predominant method, artificial intelligence techniques are still being explored and tested. Facial kinship verification, which involves comparing features between two facial images, has garnered significant research interest. This paper introduces a new approach to kinship verification using hand-palm images. The EfficientNetB0 model was utilized for deep feature extraction through transfer learning. A Siamese neural network architecture was employed to assess similarity. Various experimental scenarios were conducted concerning network architecture, training parameters, and fine-tuning. The Mosul Kinship Hand (MKH) dataset was used to create the palm dermal image dataset, consisting of 7,332 pairs equally divided into related and unrelated categories. The results were promising, achieving approximately 99% validation accuracy, and 77.02 ms average inference time per image pair using a post-training Principal Component Analysis (PCA) technique.

References

  1. Wang, S. You, S. Karaoglu, and T. Gevers, A survey on kinship verification, Neurocomputing, vol. 525, pp. 128, 2023. DOI: https://doi.org/10.1016/j.neucom.2022.12.031
  2. S. Hormann, M. Knoche, and G. Rigoll, A Multi-Task Comparator Framework for Kinship Verification, in Proceedings - 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2020, 2020, pp. 863867. DOI: https://doi.org/10.1109/FG47880.2020.00106
  3. M. Xu, X. Zhang, and X. Zhou, Confidence-Calibrated Face and Kinship Verification, IEEE Trans. Inf. Forensics Secur., vol. 19, no. 8, pp. 372384, 2024. DOI: https://doi.org/10.1109/TIFS.2023.3318957
  4. J. Yu, M. Li, X. Hao, and G. Xie, Deep Fusion Siamese Network for Automatic Kinship Verification, in Proceedings - 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2020, 2020, pp. 892899. DOI: https://doi.org/10.1109/FG47880.2020.00127
  5. O. Laiadi, A. Ouamane, A. Benakcha, A. Taleb-Ahmed, and A. Hadid, Multi-view Deep Features for Robust Facial Kinship Verification, in Proceedings - 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2020, 2020, pp. 877881. DOI: https://doi.org/10.1109/FG47880.2020.00118
  6. X. Wu, X. Feng, X. Cao, X. Xu, D. Hu, et al., Facial Kinship Verification: A Comprehensive Review and Outlook, International Journal of Computer Vision, vol. 130, no. 6. pp. 14941525, 2022. GOI: https://doi.org/10.1007/s11263-022-01605-9
  7. N. Nader, F. E.-Z. El-Gamal, S. El-Sappagh, K. S. Kwak, and M. Elmogy, Kinship verification and recognition based on handcrafted and deep learning feature-based techniques, PeerJ Comput. Sci., vol. 7, p. e735, Dec. 2021. DOI: https://doi.org/10.7717/peerj-cs.735
  8. M. C. Mzoughi, N. Ben Aoun, and S. Naouali, A review on kinship verification from facial information, Vis. Comput., vol. 41, no. 3, pp. 17891809, Feb. 2025. DOI: https://doi.org/10.1007/s00371-024-03493-1
  9. W. Wang, S. You, S. Karaoglu, and T. Gevers, A survey on kinship verification, Neurocomputing, vol. 525, pp. 128, 2023. DOI: https://doi.org/10.1016/j.neucom.2022.12.031
  10. M. Tan and Q. V. Le, EfficientNet: Rethinking model scaling for convolutional neural networks, 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 1069110700, 2019. DOI: https://doi.org/10.48550/arXiv.1905.11946
  11. A. Zhou, Y. Ma, W. Ji, M. Zong, P. Yang, et al., Multi-head attention-based two-stream EfficientNet for action recognition, Multimed. Syst., vol. 29, no. 2, pp. 487498, 2023. DOI: https://doi.org/10.1007/s00530-022-00961-3
  12. E. O. Belabbaci, M. Khammari, A. Chouchane, M. Bessaoudi, A. Ouamane, et al., Enhancing Kinship Verification through Multiscale Retinex and Combined Deep-Shallow features, 2023 6th International Conference on Signal Processing and Information Security (ICSPIS), 2023, pp. 178183. DOI: https://doi.org/10.1109/ICSPIS60075.2023.10344115
  13. J. A. Alhijaj and R. S. Khudeyer, Integration of EfficientNetB0 and Machine Learning for Fingerprint Classification, Inform., vol. 47, no. 5, pp. 4956, 2023. DOI: https://doi.org/10.31449/inf.v47i5.4724
  14. P. Eko Niti Taruno, G. Satya Nugraha, R. Dwiyansaputra, and F. Bimantoro, Monkeypox Classification based on Skin Images using CNN: EfficientNet-B0, E3S Web Conf., vol. 465, p. 02031, Dec. 2023. DOI: https://doi.org/10.1051/e3sconf/202346502031
  15. V. H. B. Hadi, A. B. Mutiara and R. Refianti, "Implementation of Convolutional Neural Network with EfficientNet-B0 Architecture for Brain Tumor Classification," 2023 Eighth International Conference on Informatics and Computing (ICIC), Manado, Indonesia, 2023, pp. 1-6. DOI: https://doi.org/10.1109/ICIC60109.2023.10381979
  16. N. N. A. Zahrani and R. Hedjar, Comparison Study Of Deep-Learning Architectures For Classification of Thoracic Pathology, in 2022 13th International Conference on Information and Communication Systems (ICICS), 2022, pp. 192198. DOI: https://doi.org/10.1109/ICICS55353.2022.9811150
  17. A. Nandy, S. Haldar, S. Banerjee, and S. Mitra, A survey on applications of siamese neural networks in computer vision, in 2020 International Conference for Emerging Technology, INCET 2020, 2020, no. 3, pp. 1317. DOI: https://doi.org/10.1109/INCET49848.2020.9153977
  18. N. Sharma, S. Gupta, H. G. Mohamed, D. Anand, J. L. V. Mazn, et al., Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification, Sustain., vol. 14, no. 18, pp. 114, 2022. DOI: https://doi.org/10.3390/su141811484
  19. H. Jansen, M. P. Gallee, and F. H. Schrder, Analysis of Sonographic Pattern in Prostatic Cancer: Comparison of Longitudinal and Transversal Transrectal Ultrasound with Subsequent Radical Prostatectomy Specimens, Eur. Urol., vol. 18, no. 3, pp. 174178, 1990. DOI: https://doi.org/10.1159/000463903
  20. Y. Li, C. L. P. Chen, and T. Zhang, A Survey on Siamese Network: Methodologies, Applications, and Opportunities, IEEE Trans. Artif. Intell., vol. 3, no. 6, pp. 9941014, 2022. DOI: https://doi.org/10.1109/TAI.2022.3207112
  21. S. Roy, M. Harandi, R. Nock, and R. Hartley, Siamese Networks: The Tale of Two Manifolds, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, vol. 2019-Octob, pp. 30463055. DOI: https://doi.org/10.1109/ICCV.2019.00314
  22. N. Serrano and A. Bellogn, Siamese neural networks in recommendation, Neural Comput. Appl., vol. 35, no. 19, pp. 1394113953, 2023. DOI: https://doi.org/10.1007/s00521-023-08610-0
  23. M. Almuashi, S. Z. Mohd Hashim, D. Mohamad, M. H. Alkawaz, and A. Ali, Automated kinship verification and identification through human facial images: a survey, Multimed. Tools Appl., vol. 76, no. 1, pp. 265307, 2017. DOI: https://doi.org/10.1007/s11042-015-3007-5
  24. A. Nandy, S. Haldar, S. Banerjee, and S. Mitra, A Survey on Applications of Siamese Neural Networks in Computer Vision, no. 3, pp. 1317, 2020. DOI: https://doi.org/10.1109/INCET49848.2020.9153977
  25. K. Martin, N. Windunga, S. Sani, S. Massie, and J. Clos, A convolutional siamese network for developing similarity knowledge in the SelfBACK dataset, CEUR Workshop Proc., vol. 2028, pp. 8594, 2017.
  26. F. Wang, X. Xiang, J. Cheng, and A. L. Yuille, NormFace, in Proceedings of the 25th ACM international conference on Multimedia, 2017, pp. 10411049. DOI: https://doi.org/10.1145/3123266.3123359
  27. R. Annisa and B. Soewito, M2FRED Analysis Using MobileNet and Siamese Neural Network, J. Adv. Inf. Technol., vol. 14, no. 6, pp. 13121320, 2023. DOI: https://doi.org/10.12720/jait.14.6.1312-1320
  28. G. Figueroa-Mata and E. Mata-Montero, Using a convolutional siamese network for image-based plant species identification with small datasets, Biomimetics, vol. 5, no. 1, 2020. DOI: https://doi.org/10.3390/biomimetics5010008
  29. C. -Y. Wu, R. Manmatha, A. J. Smola and P. Krhenbhl, Sampling Matters in Deep Embedding Learning, Proc. IEEE Int. Conf. Comput. Vis., vol. 2017-Octob, pp. 28592867, 2017. DOI: https://doi.org/10.1109/ICCV.2017.309
  30. A. Othmani, D. Han, X. Gao, R. Ye, and A. Hadid, Kinship recognition from faces using deep learning with imbalanced data, Multimed. Tools Appl., vol. 82, no. 10, pp. 1585915874, 2023. DOI: https://doi.org/10.1007/s11042-022-14058-6
  31. A. Harisha, B. K. Prasad, K. Rajeev, Maithri, and Nishchal, A performance evaluation of convolution neural networks for kinship discernment: An application in digital forensics, Intell. Decis. Technol., vol. 16, no. 2, pp. 379386, 2022. DOI: https://doi.org/10.3233/IDT-210132
  32. R. Rachmadi, I. Purnama, S. Nugroho, and Y. Suprapto, Family-Aware Convolutional Neural Network for Image-based Kinship Verification, Int. J. Intell. Eng. Syst., vol. 13, no. 6, pp. 2030, 2020. DOI: https://doi.org/10.22266/ijies2020.1231.03
  33. L. Zhang, Q. Duan, D. Zhang, W. Jia, and X. Wang, AdvKin: Adversarial Convolutional Network for Kinship Verification, IEEE Trans. Cybern., vol. 51, no. 12, pp. 58835896, 2021. DOI: https://doi.org/10.1109/TCYB.2019.2959403
  34. N. Kohli, Automatic Kinship Verification in Unconstrained Faces using Deep Learning, LCSEE, UVU, Morgantown, WV, 2019. DOI: https://doi.org/10.33915/etd.3938
  35. T. Navghare, A. Muley, and V. Jadhav, Siamese Neural Networks for Kinship Prediction: A Deep Convolutional Neural Network Approach, Indian J. Sci. Technol., vol. 17, no. 4, pp. 352358, 2024. DOI: https://doi.org/10.17485/IJST/v17i4.3018
  36. A. Rehman, Z. Khalid, Fawad, M. A. Asghar, and M. J. Khan, Kinship verification using Deep Neural Network Models, in RAEE 2019 - International Symposium on Recent Advances in Electrical Engineering, 2019, pp. 59. DOI: https://doi.org/10.1109/RAEE.2019.8886969
  37. C. Bisogni and F. Narducci, Kinship recognition: how far are we from viable solutions in smart environments?, Procedia Comput. Sci., vol. 198, no. 2018, pp. 225230, 2022. DOI: https://doi.org/10.1016/j.procs.2021.12.232
  38. J. Yu, G. Xie, X. Hao, Z. Cui, L. Zhang, et al., Deep Kinship Verification and Retrieval Based on Fusion Siamese Neural Network, in 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), 2021, no. February, pp. 18. DOI: https://doi.org/10.1109/FG52635.2021.9666938
  39. A. Abbas and M. Shoaib, Kinship identification using age transformation and Siamese network, PeerJ Comput. Sci., vol. 8, p. e987, Jun. 2022. DOI: https://doi.org/10.7717/peerj-cs.987
  40. D. Li and X. Jiang, Kinship Verification Based on Global and Local Attention Mechanism, Acad. J. Sci. Technol., vol. 5, no. 1, p. 2023, 2023.
  41. J. Yu, G. Xie, M. Li, and X. Hao, Retrieval of Family Members Using Siamese Neural Network, in Proceedings - 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2020, 2020, pp. 882886. DOI: https://doi.org/10.1109/FG47880.2020.00136
  42. S. Ibrahim Fathi and M. H. Aziz, A Dataset for Kinship Estimation from Image of Hand Using Machine Learning, Iraqi J. Electr. Electron. Eng., vol. 20, no. 2, pp. 127136, 2024. DOI: https://doi.org/10.37917/ijeee.20.2.11
  43. S. Fathi and M. Aziz, Kinship Detection Based on Hand Geometry Using ResNet50 Model for Feature Extraction, Al-Rafidain Engineering Journal (AREJ), vol. 29, no. 1, pp. 118125, 2024. DOI: https://doi.org/10.33899/arej.2024.145748.1321
  44. G. Dvorsak, A. Dwivedi, V. Struc, P. Peer, and Z. Emersic, Kinship Verification from Ear Images: An Explorative Study with Deep Learning Models, in 2022 International Workshop on Biometrics and Forensics (IWBF), 2022, pp. 16. DOI: https://doi.org/10.1109/IWBF55382.2022.9794555
  45. G. OBrien and K. Murphy, Fingerprint patterns through genetics, J. Emerg. Investig., vol. 2, no. December, pp. 15, 2020. DOI: https://doi.org/10.59720/20-012
  46. M. Thanoon and S. Dawwd, DCNN For Cataract Disease Detection Based on Model Parallelism, Al-Rafidain Engineering Journal (AREJ), vol. 29, no. 2, pp. 111118, 2024. DOI: https://doi.org/10.33899/arej.2024.147115.1338
  47. J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, How transferable are features in deep neural networks?, Adv. Neural Inf. Process. Syst., vol. 4, no. January, pp. 33203328, 2014. DOI: https://doi.org/10.48550/arXiv.1411.1792
  48. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, A simple framework for contrastive learning of visual representations, 37th Int. Conf. Mach. Learn. ICML 2020, vol. PartF16814, no. Figure 1, pp. 15751585, 2020. DOI: https://doi.org/10.48550/arXiv.2002.05709
  49. R. George, N. S. B. Nora Afandi, S. N. H. B. Zainal Abidin, N. I. Binti Ishak, H. H. K. Soe, et al., Inheritance pattern of lip prints among Malay population: A pilot study, J. Forensic Leg. Med., vol. 39, pp. 156160, Apr. 2016. DOI: https://doi.org/10.1016/j.jflm.2016.01.021
  50. S. Loganadan, M. Dardjan, N. Murniati, F. Oscandar, Y. Malinda, et al., Preliminary Research: Description of Lip Print Patterns in Children and Their Parents among Deutero-Malay Population in Indonesia, Int. J. Dent., vol. 2019, pp. 16, Mar. 2019. DOI: https://doi.org/10.1155/2019/7629146
  51. E. O. AIGBOGUN, Jr, C. P. IBEACHU, and A. M. LEMUEL, Fingerprint pattern similarity: a family-based study using novel classification, Anatomy, vol. 13, no. 2, pp. 107115, 2019. DOI: https://doi.org/10.2399/ana.19.065
  52. S. Mala, V. Rathod, S. Pundir, and S. Dixit, Pattern self-repetition of fingerprints, lip prints, and palatal rugae among three generations of family: A forensic approach to identify family hierarchy., J. Forensic Dent. Sci., vol. 9, no. 1, pp. 1519, 2017.
Download this PDF file

Statistics

How to Cite

[1]
M. H. Aziz, “Siamese Neural Networks and Transfer Learning for Kinship Verification from Dermal Palm Images”, AREJ, vol. 30, no. 2, pp. 90–103, Sep. 2025.